Intensional Learning Support by Unsupervised Learning using Boosted Supervised Algorithm

  • P. Sravani, K. Venkataramana


Traditionally,  supervised machine learning (ML) algorithms rely heavily on large sets of annotated data. This is especially true for deep learning (DL) neural networks, which need huge annotated data sets for good performance. However, large  volumes   of  annotated   data  are  not  always   readily available. In addition, some of the best performing ML and DL algorithms  lack explainability  – it is often difficult  even for domain experts to interpret the results. This is an important consideration especially in safety-critical applications, such as AI-assisted medical endeavors, in which a DL’s failure mode is not well understood. This lack of explainability also increases the risk of malicious attacks by adversarial actors because these actions can become obscured in the decision-making process that lacks transparency.  This paper describes an intensional learning approach which uses boosting to enhance prediction performance while minimizing reliance on availability of annotated data. The intensional information is derived from an unsupervised learning preprocessing step involving clustering. Preliminary evaluation on the MNIST data set has shown encouraging results. Specifically, using the proposed approach, it is now possible to achieve similar accuracy result as extensional learning alone while using only a small fraction of the original training data set.

How to Cite
P. Sravani, K. Venkataramana. (2023). Intensional Learning Support by Unsupervised Learning using Boosted Supervised Algorithm. Design Engineering, (1), 267 - 276. Retrieved from